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a b s t r a c t 

In recent years, 3D shape retrieval has been garnering increased attention in a wide range of fields, in- 

cluding graphics, image processing and computer vision. Meanwhile, with the advances in depth sensing 

techniques, such as those used by the Kinect and 3D LiDAR device, depth images of 3D objects can be 

acquired conveniently, leading to rapid increases of depth image dataset. In this paper, different from 

most of the traditional cross-domain 3D shape retrieval approaches that focused on the RGB-D image- 

based or sketch-based shape retrieval, we aim to retrieve shapes based only on depth image queries. 

Specifically, we proposed to learn a robust domain-invariant representation between 3D shape and depth 

image domains by constructing a pair of discriminative neural networks, one for each domain. The two 

networks are connected by a loss function with constraints on both inter-class and intra-class margins, 

which minimizes the intra-class variance while maximizing the inter-class margin among data from the 

two domains (depth image and 3D shape). Our experiments on the NYU Depth V2 dataset (with Kinect- 

type noise) and two 3D shape (CAD model) datasets (SHREC 2014 and ModelNet) demonstrate that our 

proposed technique performs superiorly over existing state-of-the-art approaches on depth-image-based 

3D shape retrieval task. 

© 2017 Published by Elsevier B.V. 
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. Introduction 

3D shape retrieval has become an important topic in computer

ision field with a wide range of applications in engineering, man-

facturing, product design, and the medical field. Compared to the

ithin-domain shape retrieval using 3D shapes as queries, cross-

omain shape retrieval, such as sketch-based shape retrieval and

GB image-based shape retrieval [6,16,18] , is a more attractive yet

hallenging problem. In recent years, due to the emergence of low-

ost depth sensors, e.g. the Kinect and 3D LiDAR systems, RGB-

 images of objects can be captured easily. As a consequence, a

umber of large-scale RGB-D image datasets have become avail-

ble, and precipitated the problem of cross-domain shape retrieval.

lthough RGB-D images provide large amounts of information for

uccessful shape retrieval, processing the complex RGB-D images

sually requires higher computational consumption on time and

pace. A shape retrieval system driven only on depth images may
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e a more efficient and effective system. As shown in Fig. 1 , given

 depth image query, a depth image-based shape retrieval system

an return a set of relevant 3D models from a large 3D model

atabase. As an example, product design users that simply capture

epth images of objects could greatly facilitate automated relevant

D model selection, expediting the step-wise industrial process. 

However, due to the high diversity between the raw represen-

ation formats of 2D depth images and 3D shapes, it is nearly im-

ossible to build a shape retrieval system by directly matching the

epth image queries to corresponding 3D shapes. We can also find

he variations from some examples of depth images and their cor-

esponding shapes in Fig. 2 . To tackle the variation challenge, intu-

tively, we can convert the cross-domain data into one single do-

ain to do the (within-domain) retrieval. For example, in the early

ttempt, instead of directly retrieving 3D shapes from object depth

mages, [38] transformed the depth image-based shape retrieval

roblem to a reconstructed model-based shape retrieval problem,

hich took a noisy 3D model (reconstructed based on depth im-

ges from multiple views) as input and outputted a relevant CAD

odel. However, it is not practical for users to capture depth im-
ature for robust depth-image-based 3D shape retrieval, Pattern 
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Fig. 1. Illustration of depth image-based 3D model retrieval. Given a depth scan of 

query sample, a set of relevant 3D models in a large database that are from the 

same category as query’s can be retrieved. 

Fig. 2. Examples of depth images (from NYU Depth V2 dataset) and their corre- 

sponding 3D shapes (from ModelNet dataset). As we can see from the figure, there 

is a great variation between 2D depth images and 3D shapes. 
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ages of a single object from many views. As we can see from the

Fig. 2 , in the popular RGB-D image datasets, object depth images

are captured from only one single angle. Besides, the objects in the

depth images are usually incomplete or occluded by other objects,

making the retrieval task even more challenging. 

Recently, inspired by the successful applications of autoen-

coders in the computer vision field, Feng et al. [7] proposed to

first render some depth images from each 3D model in the dataset,

and then trained an autoencoder for each 3D model based on their

rendered depth images. Finally, given a depth image query, they

got a reconstructed depth image from each autoencoder, and re-

trieved 3D models by applying a potential model on the recon-

structed depth images. Though the performance on a small sub-

set of depth images was promising, it is not easy to apply such

approach on large-scale datasets since it required to train one au-

toencoder for each 3D model. Therefore, we consider to construct

a more generalizable deep neural network to learn a cross-domain

representation for both 3D shapes and depth images. Due to the

distinctive intrinsic properties between depth image domain and

3D shape domain, it is difficult to build a neural network directly

on raw 3D shapes and depth images, so we are seeking an indirect

way that enables the connection between two domains. 
Please cite this article as: J. Zhu et al., Learning domain-invariant fe
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On the other hand, hand-crafted features have shown their ex-

ellent performance on many challenging computer vision prob-

ems. For example, 3D SIFT have been proven its effectiveness with

eading and robust results on 3D shape retrieval [5] . However, most

f current existing hand-crafted features are designed for only sin-

le domain, either 2D images or 3D shapes, and due to the great

iscrepancy, it is difficult to find an effective hand-crafted feature

orking on both 2D depth image and 3D shapes. Although it is un-

ractical to design a cross-domain hand-crafted feature manually,

e can still utilize the advantages of existing hand-crafted features

o first reduce the within-domain variation and then train a deep

eural network upon the extracted hand-crafted features to han-

le the cross-domain issues. For better learning, we use two deep

eural networks in our proposed model, one for depth images and

he other for 3D shapes. To connect these two networks, we de-

ne a loss function with constraints on both inter-class and intra-

lass margins, mapping distinctive input from two domains into

he same target space by minimizing the (intraclass) difference be-

ween cross-domain data within the same category while maxi-

izing the (interclass) variation among data from different cate-

ories. Finally, the final outputs of the trained networks are con-

idered as the domain-invariant representations for given cross-

omain data, and relevant 3D shapes can be retrieved by directly

omparing the domain-invariant features between 3D shapes and

epth image queries. 

The experimental results on three popular datasets, where

epth images are from NYU Depth V2 dataset and 3D models come

rom either SHREC 2014 database or ModelNet dataset, suggest

hat our proposed method significantly outperforms other state-of-

he-art approaches. What’s more, once the networks are trained,

e can perform efficient shape retrieval on given depth image

ueries since only some matrix computation is required. 

In summary, the main contributions of our work include: 

• To address the challenging depth-image-based 3D shape re-

trieval problem, we propose to learn a domain-invariant feature

for cross-domain data. 
• To better learn the domain-invariant feature, we design a model

with two neural networks connected and optimized by a loss

function that maximizes the inter-class margin while mini-

mizing the intra-class variance between heterogeneous cross-

domain (depth image and 3D model) data. 
• The proposed method has been successfully validated on large

datasets with superior performance over other state-of-the-arts

methods, including those applied on depth image-based shape

retrieval, transfer learning methods used on similar task, and

the approach that directly uses the original features of depth

images and 3D models as representations for retrieval. 

. Related work 

Although cross-domain shape retrieval has received many at-

entions for years, most researchers were working on sketch-based

r image-based shape retrieval. Recently, with the increases of the

epth image datasets, some researchers have started to look at the

epth image-based shape retrieval problem. In this section, we re-

iew three key components in depth image-based shape retrieval,

ncluding datasets, features and neural network. 

.1. Dataset 

Started from decades ago, extending effort has been paid on

uilding 3D shape datasets. Most of current popular 3D shape

atasets contain thousands even millions of manually designed

AD models for different kinds of objects. For example, SHREC

014 Benchmark [17,18] is one of the most popular 3D shape
ature for robust depth-image-based 3D shape retrieval, Pattern 
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ataset in computer vision field, which is usually used for evalu-

tion on sketch-based 3D shape retrieval. The Princeton ModelNet

41] is another well-known 3D model dataset providing a collec-

ion of clean CAD models for more than 600 categories. Other pub-

icly available datasets, e.g. Princeton Shape Benchmark [35] and

hapeGoogle dataset [3] , are also widely used for within-domain

D shape retrieval. 

With the advanced development of RGB-D cameras, a large

umber of RGB-D image datasets have been created. NYU depth

2 dataset [36] is a recent released RGB-D image dataset, which

rovides a large collection of RGB and depth images for diverse in-

oor objects, such as cup, desk, etc. The availability of such large-

cale RGB-D image dataset enables researchers to solve some tradi-

ional challenging computer vision problems using RGB-D images,

uch as shape reconstruction and object detection [8] . It also leads

he popularity of depth images in the graphic and computer vision

ommunities. 

.2. Features 

Due to the long history of research on 2D images, a lot of hand-

rafted features have been well-defined for different tasks, such

s image classification and object recognition, most of which are

ased on or extended from the classic bag-of-word model, e.g. SIFT

eatures [22] , SPM features [14] , ScSPM feature [42] , etc. Getting

nspiration from those 2D image processing approaches, a num-

er of hand-crafted features have been created to address the 3D

hape retrieval challenges, such as calculating the probability dis-

ribution on geometric properties of an 3D model [25] and finding

he symmetry of shapes [12] . Besides the above global descriptors,

ome local characteristics have also been utilized for more robust

hape retrieval. For example, Bronstein et al. [4] bagged the val-

es of multiscale diffusion heat kernel as features to represent 3D

odels, and Darom and Keller [5] have successfully extended the

ell-known SIFT features [22] on 3D shapes (known as LD-SIFT) to

chieve outstanding performance on shape retrieval task. 

In addition to the hand-crafted features, learning-based fea-

ures are getting more and more popular to address either im-

ge or shape problems. As a special machine learning paradigm,

ransfer learning are mainly used to tackle with the domain mis-

atch problem. Most current existing transfer learning methods

11,19,45] were operated at the features learning level, aiming to

btain a unified representation for two or more mismatched do-

ains (e.g., sketch images vs. 3D shapes, images vs. 3D shapes

nd images vs. texts). Rasiwasia et al. [29] addressed the image-

o-text and text-to-image retrieval problem by investigating the

orrelations between two modalities, and measuring the effective-

ess of abstraction. In their work, both the canonical correlation

nalysis (CCA) and the use of abstraction were proven to be effec-

ive for retrieval task. To evaluate the contributions of each sepa-

ate component, three approaches – correlation matching (CM), se-

antic matching (SM) and semantic correlations matching (SCM)

were proposed for correlation modelling, abstraction utilization

nd joint working of both approaches, respectively. In another ap-

lication on cross-domain matching, Zhang et al. [44] proposed to

atch objects in 2D images with the projected images from mul-

iple generated deformed models. 

.3. Neural network 

Inspired by biological neural networks, artificial neural network

s a system containing a number of processing elements, provid-

ng dynamic outputs according to external inputs. The simplest

ype of neural network is the perceptron, created by Rosenblatt

32] . Later, Werbos [39] introduced the backpropagation algorithm
Please cite this article as: J. Zhu et al., Learning domain-invariant fe
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aking neural networks even more popular for machine learn-

ng. Nowadays, neural network techniques have achieved great suc-

ess on various real-world applications, such as biomedicine [20] ,

nergy [2] , telecommunications [43] , geophysics [1] , etc. In addi-

ion to the traditional neural network structure, there has been in-

reasing interest in deep learning neural networks in recent years

13,15,34] , especially in convolutional neural networks (CNN). For

xample, Malinowski et al. [23] proposed to combine a CNN with

 LSTM into an end-to-end architecture for task of answering ques-

ions about images, while Pfister et al. [27] utilized CNN to estimate

uman pose in videos by combining information across the multi-

le frames using optical flow. 

Feng et al. [7] attempted to apply deep neural network tech-

iques on depth image-based shape retrieval. Multiple autoen-

oders were trained on rendered depth images from corresponding

D models, one autoencoder for one 3D model. Given a depth im-

ge query, the retrieval was performed based on the reconstructed

epth images generated from each autoencoder. Generalizing their

ethod on a large 3D model dataset could be very expensive since

ach 3D model needs one autoencder to be trained for represen-

ation. Despite the effort from Feng et al., Zhu et al. [46] recently

roposed to build a pair of neural networks for depth image-based

D shape retrieval. However, random variables were assigned as

arget vectors to connect the networks in their work, making the

etrieval performance greatly depend on the initialization of the

andom values. Their consideration on within-class variation only

lso limited the performance on shape retrieval. In this paper, we

ocus on eliminating these shortcomings by connecting the net-

ork pair with a loss function that constraints the inter-class dif-

erence as well as the intra-class variance. 

. Approach 

We propose to learn a domain-invariant representation for

epth image-based shape retrieval using two discriminative neu-

al networks, one for each domain, so that samples from the two

omains can be matched without any reconstruction on either do-

ain. Specifically, we first extract hand-crafted features from depth

mages and 3D shapes respectively, and then learn a network pair

pon the extracted hand-crafted features. In this section, we in-

roduce how we extract features in Section 3.1 , and followed by a

resentation of our network architecture in Section 3.2 . 

.1. Feature extraction 

Depth image-based shape retrieval is a typical cross-domain

atching problem. Usually, raw 3D shapes are represented by

oints (coordinates), and surfaces (triangles connected by points),

hile depth images are single-channel images containing distances

rom sensor to the surfaces of captured objects in each pixel. Since

he intrinsic variance between data from these two domains, it is

ifficult for us to do the retrieval directly on their raw presenta-

ions. Therefore, we consider to learn a network pair that could

ap the highly discriminative data (from two domains) to a com-

on feature space, where the closer feature points are more likely

o share the same class label, and the further points are more

ikely belong to different classes. 

As we known, raw 2D images have been taken as the inputs

n multiple deep neural networks for end-to-end learning, and

chieved outstanding performance. However, it is not very easy

o apply neural network on raw presentation of 3D shapes. In-

pired by the success of hand-crafted features on within-domain

hape retrieval, we extract hand-crafted features from shapes as

epresentations, which could be easily taken as inputs for any

ind of neural networks. Given these hand-crafted features, a deep

hape representation could be learned via a deep neural network.
ature for robust depth-image-based 3D shape retrieval, Pattern 
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Fig. 3. The pipeline of our proposed method, where two networks are used to handle the cross-domain issues, one for each domain. The two networks share the same 

architecture, but take different extracted features as inputs. By connecting the two networks with a loss function on the network outputs, a domain-invariant feature can be 

learned at the target layer. 
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To keep the same network structure for both shape network and

depth image network, we also extract features on depth images as

representations. Furthermore, the hand-crafted features have been

proven their discriminative ability on either image classification or

shape retrieval, so we believe that learning the domain-invariant

features from hand-crafted features could eliminate not only the

cross-domain invariance but also within-domain difference. Since

the feature extraction part is not the contribution for our paper,

we just provide brief description about the hand-crafted features

we used in our method below. 

3.1.1. Shape features 

For each 3D shape, we adopt the robust Local Depth Scale-

Invariant Features Transform (LD-SIFT) features, which is an exten-

sion of 2D SIFT [22] features used on 3D meshes. First, some in-

teresting points and local scale are detected by using Difference of

Gaussian operator. Then, LD-SIFT features can be computed as the

distances from the surrounding vertices to the dominant plane at

each interesting point. For more details, please refer to the LD-SIFT

paper [5] . 

3.1.2. Depth image features 

We extract local features for depth image following the Sparse

Coding Spatial Pyramid Matching (ScSPM) [42] framework. After

getting SIFT features of each depth image, sparse coding and multi-

scale max pooling are applied on the local SIFT features to gener-

ate some higher level features. We finally get the ScSPM features

by concatenating the SIFT features and the outputs of each sparse

coding layer and max pooling layer. For more details, please refer

to ScSPM paper [42] . 

3.2. Network architecture 

In order to reduce the discrepancy between two domains

(depth image domain and 3D shape domain), we adopt two neu-

ral networks in our model, one for depth image domain and the

other for 3D shape domain. The two networks are “aligned” by a
Please cite this article as: J. Zhu et al., Learning domain-invariant fe
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oss function at the target layer. Fig. 3 shows the architecture of

ur network, where the depth image network and the 3D shape

etwork share the same network architecture. 

Let d i , s j be the extracted features from depth images and 3D

hapes, which also are inputs for the depth image and the 3D

hape network, respectively. Then the outputs of network can be

omputed following: 

for l = 1 , D 

l 
i = f 

(
d i ∗ W 

l 
d + b l d 

)
for l = 2 , . . . , L, D 

l 
i = f 

(
D 

l−1 
i 

∗ W 

l 
d + b l d 

)
, 

(1)

here D 

l 
i 

denotes the output of each layer in the depth image net-

ork given input d i , and W 

l 
d 
, b l 

d 
are the depth image network pa-

ameters. Sigmoid function f ( z ) is adopt as the activation function

or the neurons in our network: 

f (z) = 

1 

1 + exp(−z) 
. (2)

imilarly, the outputs of 3D shape network can be obtained from:

for l = 1 , S l j = f 
(
s j ∗ W 

l 
s + b l s 

)
for l = 2 , . . . , L, S l j = f 

(
S l−1 

j 
∗ W 

l 
s + b l s 

)
, 

(3)

here S l 
j 

denotes the output of each layer in the 3D shape net-

ork for input s j , and W 

l 
s , b l s are the shape network parameters.

o connect these two networks, a loss function is designed based

n the outputs at the target layers (the last layers of the two net-

orks). In the traditional neural network, the loss function is de-

ned by minimizing the variance between the outputs of the net-

ork and the target vectors. However, it is pretty hard to define a

erfect target vector for cross-domain data by human being. One

ossible way is to define a soft-max loss upon the outputs of the

wo networks, and assign one class label for each sample. However,

t requires accurate class label for each sample, and training the

wo networks separately. A weakly-supervised method, that learns

 feature space suitable for cross-domain data, would be more de-

ired. 
ature for robust depth-image-based 3D shape retrieval, Pattern 
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Inspired by metric learning technique, our model takes a pair of

amples as inputs at each time during training, one from each do-

ain, and our loss function is composed by two terms: the inter-

lass margin and the intra-class margin. If the two samples come

rom the same category, then the variance between outputs of net-

orks is considered as the intra-class margin. Otherwise, the vari-

nce can be seen as the inter-class margin. The loss function has

he following form: 

(d i , s j , c i j ) = 

1 

N p 

N d ∑ 

i =1 

N s ∑ 

j=1 

(c i j ‖ D 

L 
i − S L j ‖ 

2 
2 − (1 − c i j ) ‖ D 

L 
i − S L j ‖ 

2 
2 ) 

+ λ
L ∑ 

l=1 

(‖ W 

l 
d ‖ 

2 
F + ‖ W 

l 
s ‖ 

2 
F ) , (4) 

here N p is the number of training pairs, N d is the number of

epth image samples, N s is the number of 3D shape samples, and

 ij is the relationship label between the sample d i and s j . If the two

nputs are from the same class, then c ij equals to 1, otherwise, c ij 
quals to 0. By minimizing the loss calculated from Eq. (4) , we can

earn a common feature space for cross-domain data with mini-

um intra-class margin and maximum inter-class margin. 

The network training process is an optimization problem, which

ims to get optimum parameters of the network so that the loss

omputed by Eq. (4) is as small as possible. We adopt the classic

ackpropagation algorithm, which can efficiently compute the par-

ial derivatives and update the parameters with gradients, to obtain

he optimum parameters. Once we obtain the optimum 

ˆ W d , 
ˆ b d , ˆ W s 

nd 

ˆ b s , given any depth image queries or 3D models, outputs of

he corresponding network at the target layer are extracted as the

omain-invariant representations. The two networks can be used

o generate domain-invariant features independently and simulta-

eously. Relevant 3D models are then retrieved based on the Eu-

lidean distance calculated between the domain-invariant features

f the depth image queries and the 3D models: 

Dist( ̂  D i , ˆ S j ) = 

√ 

m ∑ 

k =1 

( ̂  d 

k 
i 

− ˆ s k s ) 
2 . (5) 

here ˆ D i , ̂  S j denote the domain-invariant features for the ith depth

mage query and the j th 3D model, m is the dimension of the out-

ut features. The difference between the learned features of the

epth image and the 3D model from the same category should be

mall while the variance is large among those from varied classes.

e rank the distances computed by Eq. (5) in ascending order for

ach depth image query to generate a distance matrix. Then, 3D

odels with smaller distances in the matrix are retrieved as rele-

ant ones for each depth image query. 

. Experiments 

To validate the performance of our proposed method, we com-

rehensively evaluate our algorithm on one large depth image

ataset and two 3D model datasets by conducting experiments

ith various settings. Retrieval performance is evaluated by com-

on evaluation metrics and precision-recall curves. In all ex-

eriments, our method outperforms the-state-of-the-art methods,

emonstrating that our proposed method can successfully learn

he domain-invariant features for both domains (depth image and

D shape). 

.1. Datasets 

.1.1. Depth image dataset 

The queries of our proposed method are labeled depth images

rom NYU Depth V2 dataset [36] , which is comprised of video se-

uences from a variety of indoor scenes as recorded by both the
Please cite this article as: J. Zhu et al., Learning domain-invariant fe
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GB and Depth cameras from the Microsoft Kinect. The NYU Depth

2 dataset contains 1,449 densely labeled pairs of aligned RGB and

epth images with 894 object categories. Since there may be more

han one object on a single image, we extract the corresponding

epth image regions with different class labels and collect them as

ultiple object images. In order to guarantee that both the depth

mage dataset and the 3D model dataset have the same object cat-

gories, we use 2,517 depth images for 10 categories in the NYU

epth Dataset V2. The 2,517 depth images are further split into

raining dataset and test dataset with 1:1 ratio. 

.1.2. 3D model datasets 

The 3D models usd in our experiment are from two recent large

atasets. One is the large-scale extended SHREC 2014 sketch-based

D shape retrieval benchmark [17,18] and the other is the Model-

et dataset [41] from Princeton University. The SHREC 2014 bench-

ark contains 8,987 3D shapes from 171 categories. The number of

D shapes in each category varies from 1 to 632. In order to match

he object categories of depth image dataset, the database is con-

tructed by selecting 3D models in corresponding categories, which

ontains 2,174 3D shapes from 7 categories. All of the 2,174 3D

odels will be used for both training and testing. For another test

n ModelNet dataset, a subset of 4,315 clean 3D models from 10

ategories (ModelNet10) (corresponding to the sample categories

rom NYU Depth V2 dataset) are used as the 3D shape dataset. The

atio for samples in training set and test set is 1:1. 

.2. Compared approaches 

To evaluate the performance, we compare our method with

ther state-of-the-art methods [46] that address the same depth-

mage-based 3D shape retrieval problem. Besides that, we select

ome state-of-the-art transfer learning approaches used for sim-

lar cross-modality retrieval task as compared methods. The ap-

roach, that retrieves models for given depth image queries using

xtracted hand-crafted features, is also presented for comparison. 

.2.1. The non-transfer approach (NT) 

Without any further learning and processing, the non-transfer

pproach directly retrieve relevant 3D shapes utilizing the original

xtracted hand-crafted features as representation for depth image

nd 3D shapes. The shape retrieval is performed by computing the

uclidean distance between the hand-crafted features of depth im-

ge queries and shapes. 

.2.2. Transfer learning methods 

Correlation matching (CM) and Semantic Correlations Matching

SCM) are state-of-the-art transfer learning approaches on cross-

odality multimedia retrieval [29] . CM learns correlations between

wo domains with canonical correlation analysis (CCA) [10] , and

he maximal cross-modality correlations are used for retrieval.

CM is an extension of CM with a higher level of abstraction of

he domains, where logistic regression is performed on the maxi-

al correlations that are obtained from CM. Though CM and SCM

as not used on depth-image-shape retrieval problem before, they

ave been validated in similar cross-modality feature learning task.

n our experiments, we apply CM and SCM on depth-image-based

hape retrieval task with the source code released by the authors. 

.2.3. Pairwise neural network (PNN) 

The state-of-the-art approach for cross-domain 3D shape re-

rieval with depth images as queries. Zhu et al. [46] trained a

air of neural networks based on the features extracted from sam-

les independently. Identical target vectors are assigned for sam-

les from the same category for both networks. The outputs from

he hidden layers of the neural network pair were extracted as
ature for robust depth-image-based 3D shape retrieval, Pattern 
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1  

d  

e  
domain-invariant features to retrieve relevant 3D models for given

depth images. The source code is provided by authors. 

4.2.4. Proposed method (Ours) 

We construct our model using two deep neural networks, one

for each domain. Domain-invariant features are learned from the

two domains by a loss function that minimizes the intra-class dis-

tance while maximizing the inter-class variance between the cross-

domain data. Given a depth image query, relevant 3D shapes are

retrieved based on the similarity of the domain-invariant features

generated by the final outputs of the last layers in the networks. 

4.3. Evaluation protocol 

In our experiments, the performance of all compared ap-

proaches for retrieval are evaluated based on the common widely

used six evaluation metrics [35] and precision-recall (PR) curves. 

4.3.1. Evaluation metrics 

The evaluation metrics include six quantitative statistics (Near-

est Neighbor, First Tier, Second Tier, E-Measure, Discounted Cumu-

lated Gain and Average Precision) to evaluate the match retrieval

results. Nearest Neighbor (NN) is the average percentage of the

closest 3D models that belong to the same category as the depth

image queries. Supposed C denotes the total number of 3D mod-

els that are in the same category of the query’s, First Tier (FT)

is the mean percentage of 3D models that are in the same cat-

egory as the queries’ within the top | C| − 1 matches, and Second

Tire (ST) is the mean percentage of relevant 3D models within the

top 2 ∗ | C| − 1 matches for all queries. E-Measure (E) is the mean

of E q computed by the precision ( P 32 ) and recall ( R 32 ) of the first

32 retrieved models for every query as E q = 

2 
1 

P 32 
+ 1 

R 32 

. With the as-

sumption that matches appearing closer to the top of the ranked

list are more relevant, larger weights are assigned for the matches

near the top, and Discounted Cumulated Gain (DCG) is the average

weighted sum of correct results of a query in the ranked list. Aver-

age Precision (AP) computes the average precision of the retrieval

for all queries. For all six statistics, higher values indicate better

performance. 

4.3.2. Precision- R ecall (PR) curves 

To visualize the performance of retrieval results, precision-recall

curves are used to indicate the relation between precision and re-

call for all depth image queries. They are generated by calculating

the standard 11-point interpolated average precision at different

recall levels of 0.0, 0.1, ���, 0.9, 1.0. For a recall level i , interpo-

lated precision is the maximum precision at any recall level that is

larger than or equal to i . After obtaining the 11 average precision

points, we plot them on a two-dimensional graph with recall on

the x-axis and precision on the y-axis. 

4.4. Experimental settings 

Before the setup of our network model, we first extract features

from depth images and 3D models, which are used as inputs for

our networks. We follow the Sparse Coding Spatial Pyramid Match-

ing (ScSPM) [42] framework to generate features for depth image

network. After obtaining 21504-dimensional ScSPM features, Prin-

cipal Component Analysis (PCA) [40] is applied to the features to

reduce the dimension of the depth ScSPM features to 10 0 0. For 3D

shapes, we extract Local Depth Scale-Invariant Features Transform

(LD-SIFT) [5] features, and then fit the LD-SIFT feature to a Bag-of-

ords (BoW) model to get 10 0 0-dimensional histogram features

for each 3D model from the dataset. 

In all experiments, our network model is constructed by two 3-

layer neural networks with 500 hidden layer size and 10 0 0 target
Please cite this article as: J. Zhu et al., Learning domain-invariant fe
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ayer size, one for each domain. We report results from two exper-

ments in this paper. For the two experiments, depth images are

ll from NYU Depth V2 dataset, but 3D models are varied. In the

rst experiment, 3D models are selected from SHREC 2014 bench-

ark dataset, while in the other test, 3D models are collected from

he ModelNet dataset. The network structure remains the same for

he two tests. We can obtain a 10 0 0-dimensional domain-invariant

epresentation for both the depth image queries and the 3D mod-

ls from our trained network model. When training the neural net-

orks, the learning rate β and regularization term λ are set to dif-

erent values in different experiments. 

.5. Shape retrieval on SHREC 2014 dataset 

Following the experiment settings given by Zhu et al. [46] , we

est our method using 5-class samples (the first 5 categories as dis-

layed in Table 1 ) and 7-class samples (as displayed in Table 1 )

rom the datasets. Our model is trained with a depth image train-

ng set containing 50% of the depth images randomly selected from

ach category (670 for 5-category test and 1,014 for 7-category

est). The rest of the depth images are used as for testing. All 3D

odels are used in both training and testing. 

We compare our approach with recent PNN [46] and the state-

f-the-art transfer learning methods: correlation matching (CM)

nd semantic correlations matching (SCM) [29] . We also compare

ur method with the non-transfer approach, which directly uti-

izes the original depth image extracted ScSPM features and 3D

odel extracted LD-SIFT features for retrieval. The statistic results

re reported in Table 2 with six standard evaluation metrics and

n Fig. 4 with precision-recall (PR) curves generated from all com-

ared methods. The retrieval performance of our method is obtain-

ng with the learning rate β and regularization term λ set to 0.02

nd 0.0 0 05, respectively. 

Experimental results suggest that the proposed method

chieves outstanding performance when comparing with other

ethods (PNN, CM, SCM and NT) on 7-category and 5-category

atasets under the 6 metrics. As we can see in Table 2 , with-

ut any learning process, the extracted hand-crafted features ob-

ain 0.21 and 0.15 average precision on 5-category dataset and 7-

ategory dataset respectively, demonstrating the limited discrimi-

ative power of the hand-crafted features. We also observe that

pplying CM or SCM on extracted hand-crafted features actually

oes not improve the retrieval performance. The reason might be

hat CM just learns a linear dependence between data from two

omains, which does not represent the correlation between the

epth image and shapes well. Though SCM learns a higher ab-

tracted feature space using logistic regression for cross-domain

ata, the feature space is learned upon maximal correlations ob-

ained by CM, so it is understandable that the performance using

CM on depth-image-based shape retrieval is not good. PNN uses

eural networks to learn a mapping between cross-domain data

nd the defined target values, and gains much higher average pre-

ision (0.42) than NT, CM and SCM. PR-curves on Fig. 4 visualize

he performance. Our method consistently leads large margin over

ther state-of-the-art compare methods on both six performance

etrics and the PR-curves. This demonstrates the significant im-

roved performance of our model over other methods on cross-

omain retrieval and the importance of adding constraint on inter-

lass term in our loss function. 

.6. Shape retrieval on ModelNet 10 dataset 

In this section, we use a subset of ModelNet dataset with

0-category 3D models as our 3D shape database (ModelNet10

ataset). The depth image queries are the same with those in the

xperiment on SHREC 2014 dataset. The number of samples in 10
ature for robust depth-image-based 3D shape retrieval, Pattern 
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Table 1 

Number of samples in each category in the constructed dataset, where depth images and 

3D models are from NYU Depth V2 dataset and SHREC 2014 benchmark, respectively. 

Category bathtub bed chair desk dresser night stand table 

Depth images 57 318 654 197 111 148 539 

3D models 109 467 712 204 203 218 402 

Fig. 4. Precision- R ecall plots for performance comparison of state-of-the-art methods on NYU Depth V2 dataset and SHREC 2014 benchmark. The left plot shows the com- 

parisons on 5-category dataset and the right one shows the comparisons on 7-category dataset. 

Table 2 

Performance metrics comparison of depth-image-based 

3D shape retrieval on the NYU Depth V2 dataset and the 

SHREC 2014 benchmark. 

NN FT ST DCG E AP 

5 categories 

NT 0.04 0.21 0.39 0.71 0.03 0.21 

CM 0.12 0.19 0.39 0.71 0.03 0.20 

SCM 0.20 0.18 0.38 0.70 0.02 0.20 

PNN 0.52 0.39 0.58 0.78 0.06 0.42 

Ours 0.53 0.56 0.75 0.84 0.07 0.63 

7 categories 

NT 0.23 0.14 0.30 0.66 0.02 0.15 

CM 0.14 0.14 0.27 0.65 0.02 0.15 

SCM 0.14 0.14 0.27 0.65 0.03 0.15 

PNN 0.37 0.26 0.40 0.71 0.05 0.28 

Ours 0.40 0.44 0.61 0.79 0.05 0.51 
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Fig. 5. Visualization of the learned domain-invariant features using our method. 

Points represent the learned features for both depth image and 3D shape domains. 

In the figure, we only show some 3D shapes as examples to demonstrate the cor- 

responding class. Cross-domain data from the same category is assigned with the 

same color. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

f  

o

 

t  

F  

c  

t  
ategories ( bathtub, bed, chair, desk, dresser, monitor, night stand,

ofa, table, toilet ) of the two datasets are given in Table 3 . Both the

epth images and 3D models are split into training set and test-

ng set with 1:1 ratio. Therefore, there are 1,261 depth image and

,160 3D models in the training set, while 1,256 depth image and

,155 3D models in the testing set. 

When training our model on ModelNet10 dataset, we set the

earning rate β and regularization term λ to 0.001 and 0.0 0 01, re-

pectively. We first provide an example to visualize our learned

omain-invariant features in Fig. 5 by simply reducing the dimen-

ion of the learned features to two using PCA algorithm. Points in

he same color represent the cross-domain samples from the same

ategory, and some example shapes are placed next to their corre-

ponding points for better review. As we can see from the visual-

zation figure, most of the cross-domain samples have similar fea-

ures if they are in the same class. The effective domain-invariant
Please cite this article as: J. Zhu et al., Learning domain-invariant fe

Recognition Letters (2017), https://doi.org/10.1016/j.patrec.2017.09.041 
eature learning guarantees the good performance when applying

ur proposed method for depth image-based shape retrieval. 

We also present the statistic results in Table 4 and compare

he precision-recall curves against the-state-of-the-art methods in

ig. 6 . From the Fig. 6 , we can see that our method signifi-

antly outperforms other compared methods. More importantly,

he whole curve decreases much slower than other methods when
ature for robust depth-image-based 3D shape retrieval, Pattern 
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Table 3 

Number of samples in each category of the constructed dataset, where depth images are from NYU Depth V2 dataset 

and 3D models come from ModelNet10 dataset. 

Category bathtub bed chair desk dresser monitor night stand sofa table toilet 

Depth images 57 318 654 197 111 118 148 307 539 68 

3D models 148 514 869 237 244 485 245 690 445 418 

Table 4 

Performance metrics comparison of depth-image-based 

3D model retrieval on the ModelNet10 dataset and NYU 

Depth V2 dataset. 

NN FT ST DCG E AP 

NT 0.14 0.13 0.25 0.68 0.01 0.14 

CM 0.10 0.12 0.24 0.68 0.01 0.13 

SCM 0.18 0.18 0.31 0.71 0.02 0.20 

PNN 0.14 0.13 0.26 0.65 0.03 0.15 

Ours 0.33 0.33 0.46 0.76 0.04 0.41 

Recall
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
re

ci
si

on

0

0.1

0.2
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0.6
Precision-Recall Curves on ModelNet10 dataset

CM
SCM
NT
PNN
Our Method

Fig. 6. Precision- R ecall plot for performance comparison of state-of-the-art com- 

pared methods on NYU Depth V2 dataset and ModelNet 10 dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Examples of successful retrieval using our proposed method (3D models are 

from the ModelNet10 dataset). Color images are provided for better view, but only 

the depth images are used as queries. From top to bottom the queries are bath- 

tub, bed, chair, desk, dresser and monitor . Each row shows the top 6 retrieval results 

for corresponding query. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 8. Examples of failure retrieval. From top to bottom the queries are from sofa, 

table and toilet , following with their top 6 retrieval results. 3D Shapes in Cyan de- 

note correct retrieval and shapes in Gray denote the incorrect retrieval. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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the recall increases, which suggests that our method is more sta-

ble. The performance gain of our method is more than 10% when

recall reaches 1. As show in Table 4 , our method performs best in

every metric against other methods, which further demonstrates

our method is superior. On the other hand, we observe that PNN

surprisingly performed the same as the NT method. The cause

might come from the predefined target vector with random val-

ues, which could be similar for different classes. The successful

retrievals on both SHREC 2014 dataset and ModelNet10 dataset

greatly demonstrate the robustness of our proposed method. 

Finally, we visualize some successful retrieval examples for

queries from different category in Fig. 7 . Forbetter view, corre-

sponding color image is provided for each query in the first col-

umn, but we did not use any information from color images.

The second column shows the depth image queries and each row

shows the top 6 retrieval results. The retrieval results demonstrate

our method is powerful in learning domain-invariant features. In

addition, Fig. 8 presents some failure retrieval examples, in which

queries from sofa (in first row) and table (in second row) retrieve

bed as their top results. A query from toilet might be mismatched
Please cite this article as: J. Zhu et al., Learning domain-invariant fe

Recognition Letters (2017), https://doi.org/10.1016/j.patrec.2017.09.041 
o some chair models. We conclude the possible reasons as 1) the

ignificant incompleteness of the object in some depth images, for

xample, the second and third query in Fig. 8 only provide a very

mall part of object; 2) since the depth images are captured from

he real-world environment, there is some occlusion of objects, e.g.

he first query of sofa is fully covered by a lot of stuffs, such as

oys, cloths and cushions, making it have similar view with bed . Al-

hough there are some failure cases, the statics evaluation strongly

emonstrates the effectiveness of our method with superior per-

ormance on depth image-based shape retrieval. 

. Translational applications 

A method that optimizes 3D-shape identification, as rendered

y depth images, has great capacity to facilitate computer vision-

ocused object identification. More specifically, a system that is

ble to minimize the computational costs of time and memory will

nable the re-allocation of processing power to additional under-

akings. This becomes pertinent to translational medical applica-

ions that leverage deep learning techniques with real-time object

etection/categorization needs. In these approaches, identified 3D
ature for robust depth-image-based 3D shape retrieval, Pattern 
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hapes may aid in the algorithmic strategies deployed to fuse such

nformation with other inputs, towards the goal of minimum delay

emantic labelling with object identification. This operation could

ake place in parallel with local scene understanding, juxtaposing

bject identity with concurrent spatial understanding in dynamic

nvironments. 

In the visually impaired setting, wearable devices that are con-

gured as assistive technology platforms are one such application

here these approaches become attractive. Systems that focus on

eal-time spatial understanding along with on-board navigation in-

tructions will require expedited obstacle identification methodolo-

ies that are performed simultaneously with a host of additional

asks and sub-tasks [26,30,31] . While deep learning and computer

ision techniques are still in their nascent stages, as applied to

he aforementioned use cases, these systems have the potential to

rastically improve the mobility profile of those with low vision or

lindness and to reverse the untoward co-morbidities that arise as

 result of increased immobility, often a byproduct of trips, falls,

nd injuries [9,21,24,28,33,37] . 

. Conclusions 

In this work, we propose to learn a domain-invariant feature

sing deep learning techniques in an effort to address the chal-

enging problem of depth-image-based 3D shape retrieval. In order

o minimize the discrepancy between highly diverged depth im-

ges and 3D models, we build a neural network pair for the depth

mages and 3D models, while connecting the network pair at their

arget layers. Instead of enforcing identical fixed target values at

he output layers of both networks, we add a constraint on the

nter-class and intra-class margins in the loss function, enabling

he neural network pair to learn a feature space towards minimum

ntra-class variance and maximum inter-class margin during the

raining process. Our proposed method has been successfully vali-

ated on the NYU Depth Dataset V2, the extended SHREC 2014 3D

hape retrieval benchmark, and the Princeton ModelNet dataset.

he experimental results have shown that our approach outper-

orms the state-of-the-art PNN method, other transfer learning

ethods, and the paradigm that retrieves 3D models by directly

sing the original extracted hand-crafted features from depth im-

ges (ScSPM) and 3D models (3D SIFT). The large improvement

argins of our method over other techniques demonstrate its ex-

ellent capacity for cross-domain data representation. Moreover,

ince our model does not require accurate correspondence infor-

ation across different domains, it can be easily generalized to

olve real-world problems, including those that focus on transla-

ional medical applications. 
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