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ABSTRACT
Local matching problems (e.g. key point matching, geometry reg-
istration) are signi�cant but challenging tasks in computer vision
�eld. In this paper, we propose to learn a robust local 3D descriptor
from volumetric point patches to tackle the local matching tasks.
Intuitively, given two inputs, it would be easy for a network to
map the inputs to a space with similar characteristics (e.g. similar
outputs for similar inputs, far di�erent outputs for far di�erent
inputs), but the di�cult case for a network would be to map the
inputs into a space with opposite characteristics (e.g. far di�erent
outputs for very similar inputs but very similar outputs for far dif-
ferent inputs). Inspired by this intuition, in our proposed method,
we design a siamese-network-based local descriptor generator to
learn a local descriptor with small distances between match pairs
and large distances between non-match pairs. Speci�cally, an ad-
versarial enhancer is introduced to map the outputs of the local
descriptor generator into an opposite space that match pairs have
the maximum di�erences and non-match pairs have the minimum
di�erences. The local descriptor generator and the adversarial en-
hancer are trained in an adversarial manner. By competing with the
adversarial enhancer, the local descriptor generator learns to gener-
ate a much stronger descriptor for given volumetric point patches.
The experiments conducted on real-world scan datasets, including
7-scenes and SUN3D, and the synthetic scan augmented ICL-NUIM
dataset show that our method can achieve superior performance
over other state-of-the-art approaches on both keypoint matching
and geometry registration, such as fragment alignment and scene
reconstruction.
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1 INTRODUCTION
A good local geometric descriptor enables a wide range of applica-
tions, such as semantic segmentation, point matching, and scene
reconstruction. Though many methods have been proposed to learn
descriptors from multiple formats of 3D data, such as 3D mesh, 3D
scan data – RGB-D images, volumetric point patches, most of them
focused on learning a global descriptor. However, how to obtain a
good local descriptor remains a challenging but interesting com-
puter vision task. In this paper, we aim to learn a robust local 3D
descriptor that can be used as representations to match the sam-
ple points in the fragments, and then we can compute the rigid
transformation matrix (including rotations, scales, translations) be-
tween matching points in any two fragments, �nally align the two
fragments using the computed transformation (as shown in Figure
1).

At the beginning of the descriptors research history, the early
researchers were dedicated in designing hand-crafted descriptors
(features) that couldwell describe the 3D objects, such as spin-image
[22] and FPFH [33]. In themost recent decade, with the development
of the deep learning techniques, there have been a variety of ap-
plications using powerful convolutional neural networks (mostly)
in 2D computer vision area, e.g. image object classi�cation, im-
age scene parsing, image translation. Meanwhile, researchers have
shown their great interests in learning a robust local descriptor for
3D objects using convolutional neural networks. However, di�erent
from the 2D color images that consist of only pixel values in three
channels, the format of the 3D object is much more complicated,
which is usually represented as vertexes coordinates and triangles
connected by vertexes. It is nearly impossible to apply CNN tech-
niques directly on such format of 3D objects to solve 3D computer
vision problems. Inspired by the successful 2D CNN applications,
some recent approaches proposed to �rst render (multi-view) im-
ages from 3D objects, then learned a local 3D descriptor based on
the rendered images. In this way, those researchers were able to
utilize the 2D CNN framework directly to learn a 3D descriptor.
However, their performance signi�cantly depended on the quality
of the rendered images. What is more, for the approaches using
multi-view rendered images, they usually required more than 10
rendered images for each 3D model or each local part on a model,
which makes it very di�cult to be generalized or applied to other
3D objects, datasets or applications.
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Figure 1: The pipeline of our work. Given pairs of points with their local volumetric patches, we aim to learn a model that is
able to generate robust local descriptors for key point matching between all the given point pairs. Moreover, we can compute
the rigid transformation between thematch pairs of points of two fragments. Finally, the two fragments can be further aligned
using the computed transformation.

Recently, the popularization of 3D volumetric models provides
us another feasible direction to learn a robust 3D local descriptor.
One of the advantages of working on the volumetric models is
that it enables us to design a 3D CNN architecture directly on 3D
volumetric models. 3D-GAN [43] and SSCNet [40] are both latest
works based on volumetric models in 3D computer vision area for
model generation and scene completion, respectively. 3DMatch
[46] was the �rst published work that learned a local descriptor
on 3D volumetric patches generated from RGB-D frames. Though
their work was promising, their model was trained on more than
10 million correspondences for more than 8 days, which was super
time-consuming, hard to generalize and not e�cient. The causes
might be 1) the unnecessary deep network structure and 2) too
complex training strategy. In this paper, we are seeking not only a
more e�ective but also a more e�cient approach to learn a robust
local geometric descriptor on the volumetric point patches that
contain the truncated distance function (TDF) values computed
from the points (and their neighbors) on the RGB-D scene frames.

On the other hand, siamese networks with contrastive loss have
been proved their e�ectiveness on matching problems, such as
shape matching, RGB-D image matching, cross-domain matching
and point matching. Admiring the superior learning power of the
siamese network with contrastive loss, we create our local descrip-
tor generator with a pair of siamese deep 3D convolutional neural
networks. Moreover, inspired by the recent advances of the gen-
erative adversarial networks (GANs), we consider to train a local

descriptor generator in adversarial manner so that the training pro-
cess could be improved. Motivated by the idea that a robust learned
descriptor is di�cult to be mapped into an opposite feature space,
we introduce an siamese-network-based adversarial enhancer with
an opposite loss to the local descriptor generator. That is to say,
during the training process, the adversarial enhancer is learning to
minimize the distances between the generator-learned features for
non-match pairs while to maximize the distances for match pairs.
To compete with the enhancer and win the two-player game, it
enforces the local descriptor generator to learn a robust and power-
ful descriptor for giving volumetric point patches with very small
distances between the learned features for match pairs but very
large di�erences between learned features for the non-match pairs.
As a result, the performance of the local descriptor generator can
be improved.

To validate the performance of our proposed method, we con-
duct experiments on the dataset that is constructed from SUN3D
dataset [19, 44], 7-Scenes dataset [39], BundleFusion dataset [11]
and the augmented ICL-NUIM dataset for two di�erent tasks, basic
keypoint matching and geometric registration with fragment align-
ment and scene reconstruction on the computed volumetric point
patches. We report the quantitative analysis of the keypoint match-
ing problem. For the geometric registration task, we provide quanti-
tative results for fragment alignment on real-world scan scenes and
synthetic scenes separately. We also visualize some fragment align-
ment results and scene reconstructions using aligned fragments
for qualitative evaluation. The experimental results demonstrate
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that our proposed method is able to learn a robust local geometric
descriptor on the volumetric point patches with superior perfor-
mance over the state-of-the-art methods with a large gap on both
the keypoint matching and geometry registration tasks. In order to
verify the e�ectiveness of the adversarial enhancer, we present the
performance using our designed local descriptor generator without
the adversarial enhancer in all the experiments for comparison.
The performance gap implies that the adversarial enhancer can
signi�cantly improve the learning ability of the local descriptor
generator.

In summary, the main contributions of our work can be con-
cluded as:

• To address the challenging local geometrymatching problem,
we propose to learn an improved siamese-network-based
local descriptor generator on volumetric point patches with
a siamese-network-based enhancer network.

• Specially, our adversarial enhancer is optimized with the
opposite loss function to the local descriptor generator. In or-
der to compete the adversarial enhancer, the local descriptor
generator is enforced to robustly learn more similar features
for match pairs while far di�erent features for non-match
pairs.

• The experiment results demonstrate that our proposed frame-
work can generate e�ective 3D local descriptor that can
achieve superior performance over the state-of-the-art meth-
ods for keypoint matching, geometry registration (in frag-
ment alignment and scene reconstruction) on the point clouds
fragments from real-world scan SUN3D dataset, 7-Scenes
dataset and synthetic ICL-NUIM dataset.

Our paper is organized as follows: in Section 2, we review some
recent works and concepts related to our work, such as hand-crafted
3D local descriptors, learned 3D local descriptors and some GANs
applications on 3D computer vision �eld. In Section 3, we describe
the pipeline of our proposed method and details of our network
structure. In Section 4, we quantitively evaluate our learned lo-
cal descriptor on keypoint matching and geometry registration
tasks, and provide the qualitative analysis with visualization of
some aligned fragments and scenes reconstructed from multiple
fragments. Finally, we conclude our work in Section 5.

2 RELATEDWORK
In this section, we brie�y review some previous works related to
ours, including some classic and popular approaches that extracted
hand-crafted local feature, recent methods that learned local 3D
representations using deep learning techniques, introduction of
adversarial learning using neural networks (e.g. GANs) and some
successful applications with the generative adversarial networks
(GANs) technique.

2.1 Hand-crafted 3D Local Descriptors
In the early attempts to �nd a representation for 3D local parts,
researchers started their exploration from designing hand-crafted
descriptors upon the surface geometry structures of 3D mesh. One
of the well-known traditional methods is the spin image one [22],

where Johnson et al. proposed to create spin images at oriented
points of 3D meshes, and then used a set of spin images as repre-
sentation for 3D object recognition. Another approach [2] captured
the coarse distributions from the sampled points to the remaining
points as the local descriptor to �nd the point correspondences of
the 3D object. Observing that geodesic distance worked well on the
problems dealing with graph-like structures, Zhang et al. [47] got
the distribution of the average geodesic distance between points
over themeshes as the descriptors. In addition, curvature values [14]
and shape diameter [38] were two important considerations when
designing a local 3D descriptor. Most of the recent proposed hand-
crafted 3D descriptors are histogram-based descriptors [1, 6, 32, 41].
For example, Rusu et al. bined the neighborhood’s geometrical prop-
erties into a histogram as point feature [34, 35], and later improved
their descriptor by fastening the computation process with some
optimizations called Fast point feature histograms [33].

Though the above hand-crafted descriptors provided inspiration
for 3D local descriptor research, they all have the limitation that
their methods only worked on synthetic 3D meshes represented
with vertexes coordinates and triangles between them. Nowadays,
many 3D objects are captured from real-world using low-cost sen-
sors, and they are usually represented as di�erent data format, such
as point clouds, RGB-D images. However, it is not easy to apply
the hand-crafted descriptors on the captured 3D objects due to the
lack of obvious surface geometry structures in the objects. In our
work, we focus on designing a local 3D descriptor from the volu-
metric point patches. Since volumetric point patches can be easily
computed from RGB-D images, depth images, volumetric models
or point clouds, our descriptor could be conveniently extended to
the local matching problems on those kinds of real-world 3D data.

2.2 Learned 3D Local Descriptors
On the other hand, inspired by the great success of applying deep
learning techniques on various applications in graphic and vision
community, such as retrieval, classi�cation and transfer learning [7,
10, 12, 17, 20, 23, 25, 37, 49], many researchers have tried to develop
a local 3D descriptor using deep learning techniques in their recent
works. Since the mesh format of a synthetic 3D object (represented
as vertexes coordinates and triangles) is di�cult to be directly fed
into a traditional convolutional neural network, most of current
exisxtingworks �rst converted the synthetic 3D objects into another
format, such as extracted hand-crafted features, rendered images
before using the convolutional neural networks. For example, Guo
et al. [18] fed a set of hand-crafted features extracted from triangle
faces of meshes into 2D CNNs to learn a local geometric descriptor
for each triangle face labelling. In paper[45], Yi et al. learned a
local descriptor on the spectral domains of shapes for key point
prediction and 3D shape part segmentation. In another work, Huang
et al. [21] proposed to learn a local 3D descriptor on multi-scale
images rendered from points on the 3D objects. In addition, some
published works discussed their approaches on the manifolds of
the deformable models, especially on human bodies [3, 4, 28, 30].

According to our knowledge, 3DMatch [46] is the �rst work
proposed to learn a local descriptor on volumetric point patches
that contained truncated distance function (TDF) values computed
from the local part (points and their neighbors) of the real-world
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3D data (e.g. depth scans). While their method showed impressive
results in local matching problems, their training process was very
time-consuming due to the unnecessary deep network structure
and complex training strategy. In our work, we are seeking a way
to alleviate the training process of learning a local descriptor but
with equal or even better matching performance. Admiring the
advantages of using volumetric point patches and the learning
power of siamese network structure in matching problems, we
build the framework on our designed siamese network structure
that takes the volumetric point patches as inputs and output their
learned local descriptors.

2.3 GAN-based Descriptors
Introducing by Goodfellow et al. [15], generative adversarial net-
works (GANs) have been proved its excellent learning ability on
multiple tasks in computer vision area. A classic structure of gener-
ative adversarial networks (GANs) consist of one generator G and
one discriminator D, and both are multilayer neural networks. The
generator and discriminator are usually trained as a two-player
minimax game with a competing loss. During the training process,
the generator is learning to synthesize data as "real" as the real data,
while the discriminator is learning to improve its distinguish ability
of the real data. Optimization of the competing loss function can
be acquired when the generative data distribution is equal to the
real data distribution.

Most of the current research works applied GANs techniques to
address tasks on 2D computer vision �eld, such as image genera-
tion, image domain adaption, image-to-image translation and image
completion [5, 26, 27, 50]. We also realize the potential of using ad-
versarial strategy on feature learning tasks. As one of the attempts,
Radford et al. [31] extracted max-pooling features from learned
discriminator as the unsupervised features for image classi�cation.
[43] and [48] are the recent works to apply GANs technique on the
volumetric 3D model generation, where they obtained the unsuper-
vised features from multiple layers of their trained discriminator as
the representations for 3D model classi�cation.

Besides extracting features directly from the discriminators of
GANs framework, some researchers extended the adversarial learn-
ing idea by adding a discriminator into some classical feature learn-
ing models to improve the discriminability of the original descrip-
tors. For example, Wang et al. [42] challenged an image classi�er by
introducing two adversarial networks to generate some rare sam-
ples that were di�cult for normal classi�ers to recognize, which
in turn signi�cantly improved the image classi�er. One more case,
Salimans et al. [36] successfully improved the classi�ed ability of
the image features by adding some samples generated from a ad-
versarial generator. In paper [16], the authors also highlighted the
importance of adding adversarial samples when training a classi�er.
In our work, we explore the e�ectiveness of adding an adversarial
siamese-network-based enhancer when learning a local 3D descrip-
tor.

3 APPROACH
In this section, we provide details of our method for learning a
robust local descriptor on volumetric point patches. We start with
brief description of the basic structure and concepts of general

siamese network followed by the presentation for our proposed
framework architecture.

3.1 Siamese Deep Convolutional Networks
Introduced by [9] with applications on face veri�cation, siamese
deep convolutional network has been proved its great ability to
learn a descriptor in a wide range of areas. Generally, the siamese
networks are a pair of deep convolution networks with exactly
same network architecture and weight sharing between them. Con-
trastive loss is one of the classic loss function used to train siamese
networks. Given a pair of inputs in the same data format, the
siamese networks map the input data into a common feature space,
where the feature di�erence between the feature vectors is small if
they are a match pair, and large if they are a non-match pair. Let x1,
x2 be a pair of inputs, and label � = 1 means the pair is matched
while � = 0 means the given pair is not matched. Then the siamese
networks can be updated by minimizing the following loss function

L =
1
2N

N’
j=1

� ⇤ d2j + (1 � �) ⇤max(mar�in � dj , 0)2, (1)

where d denotes the feature di�erences (usually the Euclidean dis-
tance) between the two feature vectors on the learned feature space,
N is the total number of training sample pairs, and margin con-
strains the di�erences between non-match pairs. The optimization
of the loss function above can be solved by applying classic back-
propagation algorithm. The parameters in both networks will be
updated with the same gradients in each training epoch.

3.2 Network Architecture
By introducing the adversarial enhancer, we aim to improve the
local descriptor generator so that it can generate more robust local
features for given volumetric point patches with smaller distances
between the learned features for match pairs but larger distances
between learned features for non-match pairs. Figure 2 shows the
framework of our proposed method, which consists of a local de-
scriptor generator and an adversarial enhancer. We will present the
structure of these two parts in detail below.

Local Descriptor Generator Our local descriptor generator G
is a deep siamese neural network that maps given input volumetric
point patches into a feature space, where the distances between
features of match pairs are small while the distances between fea-
tures of non-match pairs are large. Each in the pair of siamese
networks includes four 3D convolution layers with channel size
{64, 128, 256, 512}, kennel size 3 ⇥ 3 ⇥ 3 and stride 1, followed by a
global max pooling layer and two fully-connected layers with neu-
ron size {512, 256}. ReLU layer is added to connect each two layers
except the last fully-connected layer. All of the network parameters
are shared between the networks. The �nal 256-dimensional output
vectors are the learned local descriptors for the given volumetric
point pairs. We utilize contrastive loss as the basic loss for our local
descriptor generator:

LG =
1
2N

’
� ⇤ | |G(x1) �G(x2)| |2+

(1 � �) ⇤max(mar�in � | |G(x1) �G(x2)| |, 0)2,
(2)
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Figure 2: The framework of our proposed method. It consists of two parts: a local descriptor generator and an adversarial en-
hancer. The local descriptor generator contains a siamese deep convolutional neural networks, while the adversarial enhancer
has a siamese networks with only simple fully-connected layers. Optimizing with the contrastive loss LE which is opposite
to the loss in the local descriptor, the enhancer is introduced to boost the generator in adversarial manner. In order to com-
pete with the enhancer, the local descriptor generator must learn to generate much stronger feature with smaller di�erence
between match pairs while larger di�erence between non-match pairs.

where x1 and x2 represent a pair of volumetric patches with size
30 ⇥ 30 ⇥ 30, � denotes whether the given pair is a match or not (in
our case, � = 1 for match pairs, � = 0 for non-match pairs). | | · | | is
the Euclidean distance between the two vectors.

Adversarial EnhancerThe purpose of the adversarial enhancer
is to improve the learning ability of the local descriptor generator so
that it could generate more similar outputs for match pairs but far
more di�erent outputs for non-match pairs. Ideally, the distances
between descriptors of match pairs are 0 while the distances be-
tween the descriptors of non-match pairs are as large as possible.
Motivated by the ideal case, we design an enhancer network that
tries to maximize the distances between the learned descriptors
of match pairs while minimize the distances between the learned
descriptors of non-match pairs. If the learned descriptor is strong
enough, it would be very di�cult for the enhancer network to learn
such kind of space.

The inputs for our adversarial enhancer are the outputs (local de-
scriptors) from the local descriptor generator G(x1) and G(x2). We
build our enhancer Ewith a pair of siamese networks so that it could
be trained with the local descriptor generator simultaneously. The
siamese network in the enhancer has four fully-connected layers
with neuron size {256, 256, 128, 128}. ReLU layer is added between
each two layers. Same as normal siamese networks, the network
parameters are shared. Let E(·) be the 128-dimensional output of
the enhancer network, then the loss function of the enhancer can

be described as

min
E

LE =
1
2N

’
(1 � �) ⇤ | |E(G(x1)) � E(G(x2))| |2+

� ⇤max(mar�in � | |E(G(x1)) � E(G(x2))| |, 0)2.
(3)

Network Training In order to learn a robust descriptor that
cannot be easily mapped into the space with opposite characteristic,
the local descriptor generator G learns to compete the adversarial
enhancer with the adversarial loss

LGEn =
1
2N

’
� ⇤ | |E(G(x1)) � E(G(x2))| |2+

(1 � �) ⇤max(mar�in � | |E(G(x1)) � E(G(x2))| |, 0)2.
(4)

Therefore, the loss function of the local descriptor generator can
be extended as

min
G

LLDG = LG + � ⇤ LGEn . (5)

We use ADAM optimizer to obtain the optimal network parameters
with beta value � = 0.5, learning rate 0.0001 and margin 1.0. Con-
sidering that our enhancer here works like an auxiliary for the local
feature generator, the loss LGEn should not overwhelm LG . After
several trials, we �nd that 0.01 is the most suitable value for � to
train the whole framework. The parameters in the local descriptor
generator and the adversarial enhancer are updated separately in
each epoch.
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Table 1: Matching error comparisons on keypoint match-
ing with state-of-the-art methods on the testing dataset con-
structed from the SUN3D and 7-scenes datasets.

Method Matching Error (%)
Spin-Images [22] 83.7
FPFH [33] 61.3
3DMatch [46] 35.3
Ours without Adversarial Enhancer 32.4
Ours with Adversarial Enhancer 29.5

4 EXPERIMENTS
To comprehensively validate our proposed framework, we conduct
two di�erent experiments on large-scale RGB-D reconstruction
datasets, including keypoint matching and geometry registration.
We present the experiment settings, quantitive matching analysis
and qualitative registration results obtained by applying our pro-
posed local descriptor on the computed volumetric patches from
the indoor scenes. The experimental results demonstrate that our
method can learn a robust representation for local 3D volumetric
point patches to solve classic local matching problems. Moreover,
though ourmodel is trained on fewer samples for less time, it outper-
forms the state-of-the-arts methods with lower keypoint matching
error and higher geometry registration precisions.

4.1 Keypoint Matching
In this task, we train our proposed framework on the point patches
sampled from large-scale SUN3D dataset [19, 44], 7-Scenes dataset
[39] and RGB-D Scenes V2 dataset [24]. There are totally more than
100K RGB-D frames categorized into 54 di�erent indoor scenes,
including o�ces, apartments, hotels and study-rooms. Following
the setting in 3DMatch paper [46], we split the 54 scenes into two
non-overlap training set and testing set, which contain 46 and 8
non-overlap scenes, respectively. For fair comparison, we use 1) the
same sample strategy as the one used in 3DMatch to sample 30K
pairs of 30 ⇥ 30 ⇥ 30 volumetric point patches from the 46 training
scenes to construct our own training set, where 15K are match
pairs and the rest are non-match pairs; and 2) the same testing set
as the one in 3DMatch, which contains 10K pairs of point patches
sampled from the 8 test scenes with a ratio of 1 : 1 for match pairs
and non-match pairs.

After training our model on the constructed training set, for each
point patch in the testing set, we extract 256-dimensional outputs
from the trained local descriptor generator as their representations,
and then match them based on the Euclidean distances calculated
between the extracted learned features for each keypoint pair. We
measure the matching performance using the false-positive rate
(matching error), the lower the better. The matching error of our
method is 29.5% when recall reaches 95% (as shown in Table 1).
More importantly, our designed model only needs approximately
14 hours for training, which is nearly 14 times faster than 3DMatch
(trained for more than 8 days).

Furthermore, we collect the publicly available results of state-
of-the-art approaches from the 3DMatch website 1 for comparison,

1http://3dmatch.cs.princeton.edu

Table 2: The precision and recall comparisons of geometry
registration with state-of-the-art methods on the synthetic
scenes in the augmented ICL-NUIM dataset.

Method Recall (%) Precision (%)
Super 4PCS [29] 17.8 10.4
FPFH [33] 44.9 14.0
Variant FPFH [8] 59.2 19.6
FPFH [33] + RANSAC 46.1 19.1
Spin-Images [22] + RANSAC 52.0 21.7
3DMatch [46] + RANSAC, �ne-tuned 65.1 25.2
Ours without Adversarial Enhancer + RANSAC 58.6 25.3
Ours with Adversarial Enhancer + RANSAC 60.3 28.3

Table 3: The precision and recall comparisons of geome-
try registration with state-of-the-art methods on real-world
scan scenes constructed from the SUN3D and 7-scenes
datasets.

Method Recall (%) Precision (%)
FPFH [33] + RANSAC 44.2 30.7
Spin-Images [22] + RANSAC 51.8 31.6
3DMatch [46] + RANSAC 66.8 40.1
Ours without Adversarial Enhancer + RANSAC 69.1 40.5
Ours with Adversarial Enhancer + RANSAC 72.0 42.9

see Table 1. Though our method is only trained on a smaller dataset
with 30K pairs of volumetric point patches, our method achieves
the lowest matching error among all the compared approaches,
e.g. spin-images [22], Fast Point Feature Histograms (FPFH) [33],
3DMatch [46]. We also report the keypoint matching performance
(32.4% error) when using our framework without the adversarial
enhancer with the same experimental settings, e.g. batch size, learn-
ing rate, epoch, etc. The improvement of the performance using
the framework with the adversarial enhancer clearly demonstrates
the e�ectiveness of the adversarial enhancer.

4.2 Geometry Registration
In addition to the keypoint matching task, we further evaluate our
learned local descriptor on another local matching problem – ge-
ometry registration. Geometry registration is a challenging task
that match two or more fragments which belong to the same scene
as a whole one. Following the instruction of 3DMatch, we �rst
extract the 256-dimensional local descriptors for all the sampled
point patches (e.g. 5K sampled point pairs) on each fragment, and
then apply the RANSAC [13] algorithm to �nd out the optimum
transformation metric based on the match point pairs between two
fragments. After that, we can align any two fragments (from the
same scene) with the computed transformation, and reconstruct
the scenes by combining multiple aligned fragments. If a method
can generate more robust local features that well describe the lo-
cal points, match point pairs would be detected easily, and as a
consequence, the alignment results will be better.

To quantitatively verify the registration performance, we calcu-
late the precisions and recalls among the transformations between
each testing fragment pair, following the evaluation measurement
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Figure 3: Examples of fragment alignment results using our learned 3D local descriptor. For comparison, we also provide the
alignment results using the descriptors generated from the state-of-the-art 3DMatch [46]. From the visualization results, we
can observe that our descriptor particularly performs better on the challenging cases that the two fragments only contain
a small part in common. The color images of the fragments are used for better review only. No color image is used in our
proposed method.

introduced by Choi et al. [8]. For each fragment pair (Pi , Pj ), a com-
puted transformation Ti j is compared to the ground-truth transfor-
mationT ⇤

i j only ifTi jPi overlaps certain percentage of Pj (e.g. 30%).
Ti j is considered as a true positive if the RMSE of the ground-truth
correspondences K⇤

i j is below a threshold � :

1
|K⇤
i j |

’
(p⇤,q⇤)2K ⇤

i j

| |Ti jp⇤ � q⇤ | |2 < � 2. (6)

We used a threshold � = 0.2 in experiments on both synthetic frag-
ment in the augmented ICL-NUIM [8] dataset and the real-world
scan fragment datasets, including fragments from SUN3D [19, 44]
and 7-Scenes [39]. Experimental settings and results will be dis-
cussed separately below.

Registration on synthetic fragments In this subtest, we train
our model on the constructed training set mentioned in the sub-
section 4.1, and test it on the dataset provided by the 3DMatch
authors, which contains some sampled volumetric point patches
for the fragments in the augmented ICL-NUIM [8]. There are a
total of 207 fragments in four scenes, including 57 fragments for
livingroom1, 47 fragments for livingroom2, 53 fragments for o�ce1
and 50 fragments for o�ce2.

Table 2 lists the average recalls and precisions of state-of-the-art
algorithms on the augmented ICL-NUIM dataset. Our proposed

method with adversarial enhancer can obtain a pretty high preci-
sion (28.3%) and recall (60.3%) . Specially, the precision is 3% higher
than the most recent work 3DMatch. Moreover, the recall of our
method is much higher than most of the compared methods, such
as Spin-Images, FPFH. Though 3DMatch shows the highest recall
among all the compared methods, it is computed with a �ne-tuned
model, which requires much more extra training time and training
samples.

Registration on real-world fragments In addition to the syn-
thetic fragments dataset, we also test our trained model on the
dataset containing fragments from real-word sensor scans. The
dataset consists of 60 fragments in the redkitchen scene of 7-scenes
dataset, 120 fragments of home scene in SUN3D dataset, 103 frag-
ments of hotel scene in SUN3D dataset, 66 fragments of studyroom
scene in SUN3D dataset and 38 fragments of lab scene in SUN3D
dataset. After extracting the local descriptors for the sampled point
patches in each fragment, we compute the precisions and recalls
given the transformations between each two fragments in the same
scene.

The comparative results are provided in Table 3, where our pro-
posed model without adversarial enhancer obtains 40.5% precision
and 69.1% recall, and our model trained with adversarial enhancer
performs even better with 72.0% precision and 42.9% recall. The
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(a) Kitchen

(b) Hotel

(c) Living room

Figure 4: Examples of scenes that are reconstructed by simply combining multiple aligned fragments using our proposed
descriptor. The color images of the scenes are displayed for better review only. Please note that no color image is needed in
our proposed method.

large gap of the performance implies the great in�uence of intro-
ducing an adversarial enhancer when training the local descriptor
generator. We also list the experimental results of other state-of-
the-art methods in the table. As we can see from the table, our
method performs the best among all the compared methods at both
precision and recall measurements.

Qualitative analysis of fragment alignmentBesides the quan-
titative evaluation, some examples of alignment results are visu-
alized in Figure 3 for the intuitively qualitative alignment evalua-
tion between two fragments within the same scene. In particular,
we pick some alignments results using 3DMatch for comparison.
All alignments are obtained with the transformation optimized by
RANSAC algorithm. In some challenging cases (e.g. only a very
small overlap between two fragments), 3DMatch could fail to align
the fragments, but our descriptor is still able to handle such di�cult
cases properly. Also, we can reconstruct scenes only by simply com-
bining multiple aligned fragments using our proposed descriptor.
Figure 4 shows some of our scene reconstruction results, such as
kitchen in 7-scenes dataset, hotel in SUN3D dataset and living room
in ICL-NUIM dataset.

5 CONCLUSIONS
In this paper, we tackle the challenging 3D local matching prob-
lems by learning a robust local 3D descriptor with an adversarial
enhancer. In order to enforce the local descriptor learned with

the minimum distances between match pairs and the maximum
distances between non-match pairs, we design a deep-siamese-
network-based enhancer with a loss function opposite from the
local descriptor generator. After training, given volumetric point
patches, we extract the outputs from the learned local descriptor
generator as their representations. The superior performance over
state-of-the-art methods on both keypoint matching and geometry
registration suggests that our proposed framework can learn a ro-
bust 3D local descriptor for volumetric point patches. To verify the
e�ectiveness of our designed adversarial enhancer, we compare the
keypoint matching and geometry registration performance of our
framework with enhancer and without enhancer. The performance
gap clearly indicates the training improvement of introducing the
adversarial enhancer. Furthermore, the qualitative fragment align-
ment and scene reconstruction results demonstrate that our learned
local descriptor can successfully match local point patches even in
challenging cases that only a small common part exists between
the fragments.
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